--- title: "6. Discretized Partial Least Squares (`dPLS`)" author: - name: Koki Tsuyuzaki affiliation: Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research email: k.t.the-answer@hotmail.co.jp date: "`r Sys.Date()`" bibliography: bibliography.bib package: dcTensor output: rmarkdown::html_vignette vignette: | %\VignetteIndexEntry{5. Discretized Partial Least Squares (`dPLS`)} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- # Introduction In this vignette, we consider approximating multiple matrices as a product of ternary (or non-negative) low-rank matrices (a.k.a., factor matrices). Test data is available from `toyModel`. ```{r data, echo=TRUE} library("dcTensor") X <- dcTensor::toyModel("dPLS_Easy") ``` You will see that there are five blocks in the data matrix as follows. ```{r data2, echo=TRUE, fig.height=2.7, fig.width=8} suppressMessages(library("fields")) layout(t(1:3)) image.plot(X[[1]], main="X1", legend.mar=8) image.plot(X[[2]], main="X2", legend.mar=8) image.plot(X[[3]], main="X3", legend.mar=8) ``` # Semi-Ternary Simultaneous Matrix Factorization (STSMF) Here, we introduce the ternary regularization to take {-1,0,1} values in $V_{k}$ as below: $$ \max{\mathrm{tr} \left( V_{j}'X_{j}'X_{k}V_{k} \right)}\ \mathrm{s.t.}\ j ≠k, V \in \{-1,0,1\}, $$ where $j$ and $k$ range from $1$ to $K$, $K$ is the number of matrices, $X_{k}$ ($N \times M_{k}$) is a $k$-th data matrix and $V_{k}$ ($M_{k} \times J$) is a $k$-th ternary loading matrix. In `dcTensor` package, the object function is optimized by combining gradient-descent algorithm [@svd] and ternary regularization. ## Basic Usage In STSMF, a rank parameter $J$ ($\leq \min(N, M)$) is needed to be set in advance. Other settings such as the number of iterations (`num.iter`) are also available. For the details of arguments of dPLS, see `?dPLS`. After the calculation, various objects are returned by `dPLS`. STSMF is achieved by specifying the ternary regularization parameter as a large value like the below: ```{r pls, echo=TRUE} set.seed(123456) out_dPLS <- dPLS(X, Ter_V=1E+5, J=3) str(out_dPLS, 2) ``` The reconstruction error (`RecError`) and relative error (`RelChange`, the amount of change from the reconstruction error in the previous step) can be used to diagnose whether the calculation is converged or not. ```{r conv_pls, echo=TRUE, fig.height=4, fig.width=8} layout(t(1:2)) plot(log10(out_dPLS$RecError[-1]), type="b", main="Reconstruction Error") plot(log10(out_dPLS$RelChange[-1]), type="b", main="Relative Change") ``` The products of $U_{k}$ and $V_{k}$ ($k = 1 \ldots K$) show whether the original data matrices are well-recovered by `dPLS`. ```{r rec_pls, echo=TRUE, fig.height=5, fig.width=8} recX <- lapply(seq_along(X), function(x){ out_dPLS$U[[x]] %*% t(out_dPLS$V[[x]]) }) layout(rbind(1:3, 4:6)) image.plot(t(X[[1]])) image.plot(t(X[[2]])) image.plot(t(X[[3]])) image.plot(t(recX[[1]])) image.plot(t(recX[[2]])) image.plot(t(recX[[3]])) ``` The histograms of $V_{k}$s show that all the factor matrices $V_{k}$ looks ternary. ```{r u_v, echo=TRUE, fig.height=5, fig.width=8} layout(rbind(1:3, 4:6)) hist(out_dPLS$U[[1]], breaks=100) hist(out_dPLS$U[[2]], breaks=100) hist(out_dPLS$U[[3]], breaks=100) hist(out_dPLS$V[[1]], breaks=100) hist(out_dPLS$V[[2]], breaks=100) hist(out_dPLS$V[[3]], breaks=100) ``` # Session Information {.unnumbered} ```{r sessionInfo, echo=FALSE} sessionInfo() ``` # References