djNMF
)In this vignette, we consider approximating non-negative multiple matrices as a product of binary (or non-negative) low-rank matrices (a.k.a., factor matrices).
Test data is available from toyModel
.
You will see that there are some blocks in the data matrices as follows.
suppressMessages(library("fields"))
layout(t(1:3))
image.plot(X[[1]], main="X1", legend.mar=8)
image.plot(X[[2]], main="X2", legend.mar=8)
image.plot(X[[3]], main="X3", legend.mar=8)
Here, we consider the approximation of K binary data matrices Xk (N × Mk) as the matrix product of W (N × J) and Vk (J Mk):
Xk ≈ (W + Vk)Hk s.t. W, Vk, Hk ∈ {0, 1}
This is the combination of binary matrix factorization (BMF (Zhang 2007)) and joint non-negative matrix
decomposition (jNMF (Zi 2016; CICHOCK
2009)), which is implemented by adding binary regularization
against jNMF. See also jNMF
function of nnTensor
package.
In SBSMF, a rank parameter J ( ≤ min (N, M)) is needed to
be set in advance. Other settings such as the number of iterations
(num.iter
) or factorization algorithm
(algorithm
) are also available. For the details of
arguments of djNMF, see ?djNMF
. After the calculation,
various objects are returned by djNMF
. SBSMF is achieved by
specifying the binary regularization parameter as a large value like the
below:
## List of 7
## $ W : num [1:100, 1:4] 0.343 0.338 0.346 0.344 0.342 ...
## $ V :List of 3
## ..$ : num [1:100, 1:4] 2.04e-56 4.12e-56 2.27e-54 2.49e-55 7.58e-56 ...
## ..$ : num [1:100, 1:4] 1.65e-63 2.34e-64 2.07e-60 2.49e-62 6.55e-61 ...
## ..$ : num [1:100, 1:4] 0.156 0.143 0.157 0.155 0.15 ...
## $ H :List of 3
## ..$ : num [1:300, 1:4] 4.17e-06 3.30e-06 3.38e-06 3.85e-06 7.51e-07 ...
## ..$ : num [1:200, 1:4] 7.05e-20 7.47e-20 2.01e-20 4.33e-19 4.83e-20 ...
## ..$ : num [1:150, 1:4] 95.3 95.9 96.4 94.1 94.9 ...
## $ RecError : Named num [1:101] 1.00e-09 1.14e+04 1.03e+04 9.94e+03 9.98e+03 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
## $ TrainRecError: Named num [1:101] 1.00e-09 1.14e+04 1.03e+04 9.94e+03 9.98e+03 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
## $ TestRecError : Named num [1:101] 1e-09 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
## $ RelChange : Named num [1:101] 1.00e-09 1.95e-01 1.12e-01 3.46e-02 3.96e-03 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
The reconstruction error (RecError
) and relative error
(RelChange
, the amount of change from the reconstruction
error in the previous step) can be used to diagnose whether the
calculation is converged or not.
layout(t(1:2))
plot(log10(out_djNMF$RecError[-1]), type="b", main="Reconstruction Error")
plot(log10(out_djNMF$RelChange[-1]), type="b", main="Relative Change")
The products of W and Hks show whether
the original data matrices are well-recovered by djNMF
.
recX1 <- lapply(seq_along(X), function(x){
out_djNMF$W %*% t(out_djNMF$H[[x]])
})
recX2 <- lapply(seq_along(X), function(x){
out_djNMF$V[[x]] %*% t(out_djNMF$H[[x]])
})
layout(rbind(1:3, 4:6, 7:9))
image.plot(X[[1]], legend.mar=8, main="X1")
image.plot(X[[2]], legend.mar=8, main="X2")
image.plot(X[[3]], legend.mar=8, main="X3")
image.plot(recX1[[1]], legend.mar=8, main="Reconstructed X1 (Common Factor)")
image.plot(recX1[[2]], legend.mar=8, main="Reconstructed X2 (Common Factor)")
image.plot(recX1[[3]], legend.mar=8, main="Reconstructed X3 (Common Factor)")
image.plot(recX2[[1]], legend.mar=8, main="Reconstructed X1 (Specific Factor)")
image.plot(recX2[[2]], legend.mar=8, main="Reconstructed X2 (Specific Factor)")
image.plot(recX2[[3]], legend.mar=8, main="Reconstructed X3 (Specific Factor)")
The histogram of W shows that the factor matrix W looks binary.
layout(rbind(1:4, 5:8))
hist(out_djNMF$W, main="W", breaks=100)
hist(out_djNMF$H[[1]], main="H1", breaks=100)
hist(out_djNMF$H[[2]], main="H2", breaks=100)
hist(out_djNMF$H[[3]], main="H3", breaks=100)
hist(out_djNMF$V[[1]], main="V1", breaks=100)
hist(out_djNMF$V[[2]], main="V2", breaks=100)
hist(out_djNMF$V[[3]], main="V3", breaks=100)
## R version 4.4.3 (2025-02-28)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.2 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] nnTensor_1.3.0 fields_16.3.1 viridisLite_0.4.2 spam_2.11-1
## [5] dcTensor_1.3.0 rmarkdown_2.29
##
## loaded via a namespace (and not attached):
## [1] gtable_0.3.6 jsonlite_1.9.1 compiler_4.4.3 maps_3.4.2.1
## [5] Rcpp_1.0.14 plot3D_1.4.1 tagcloud_0.6 jquerylib_0.1.4
## [9] scales_1.3.0 yaml_2.3.10 fastmap_1.2.0 ggplot2_3.5.1
## [13] R6_2.6.1 tcltk_4.4.3 knitr_1.49 MASS_7.3-65
## [17] dotCall64_1.2 misc3d_0.9-1 tibble_3.2.1 maketools_1.3.2
## [21] munsell_0.5.1 pillar_1.10.1 bslib_0.9.0 RColorBrewer_1.1-3
## [25] rlang_1.1.5 cachem_1.1.0 xfun_0.51 sass_0.4.9
## [29] sys_3.4.3 cli_3.6.4 magrittr_2.0.3 digest_0.6.37
## [33] grid_4.4.3 rTensor_1.4.8 lifecycle_1.0.4 vctrs_0.6.5
## [37] evaluate_1.0.3 glue_1.8.0 buildtools_1.0.0 colorspace_2.1-1
## [41] pkgconfig_2.0.3 tools_4.4.3 htmltools_0.5.8.1