--- title: "2. Discretized Non-negative Tri-Matrix Factorization (`dNMTF`)" author: - name: Koki Tsuyuzaki affiliation: Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research email: k.t.the-answer@hotmail.co.jp date: "`r Sys.Date()`" bibliography: bibliography.bib package: dcTensor output: rmarkdown::html_vignette vignette: | %\VignetteIndexEntry{2. Discretized Non-negative Tri-Matrix Factorization (`dNMTF`)} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- # Introduction In this vignette, we consider approximating a binary or non-negative matrix as a product of three non-negative low-rank matrices (a.k.a., factor matrices). Test data is available from `toyModel`. ```{r data, echo=TRUE} library("dcTensor") X <- dcTensor::toyModel("dNMF") ``` You will see that there are five blocks in the data matrix as follows. ```{r data2, echo=TRUE, fig.height=4, fig.width=5} suppressMessages(library("fields")) image.plot(X, main="Original Data", legend.mar=8) ``` # Binary Matrix Tri-Factorization (BMTF) Here, we consider the approximation of a binary data matrix $X$ ($N \times M$) as a matrix product of $U$ ($N \times J1$), $S$ ($J1 \times J2$), and $V$ ($M \times J2$): $$ X \approx U S V' \ \mathrm{s.t.}\ U,V \in \{0,1\}, S \geq 0 $$ Here, we call this Binary Matrix Tri-Factorization (BMTF). BMTF is based on Non-negative Matrix Tri-Factorization (NMTF [@nmtf1; @nmtf2; @nmtf3]) and Binary Matrix Factorization (BMF [@bmf]). For the details of NMTF, see also `NMTF` function of [nnTensor](https://cran.r-project.org/package=nnTensor) package. ## Basic Usage In BMTF, two rank parameters $J1$ ($\leq N$) and $J2$ ($\leq M)$) is needed to be set in advance. Other settings such as the number of iterations (`num.iter`) or factorization algorithm (`algorithm`) are also available. For the details of arguments of dNMTF, see `?dNMTF`. After the calculation, various objects are returned by `dNMTF`. ```{r bmf, echo=TRUE} set.seed(123456) out_BMTF <- dNMTF(X, Bin_U=10, Bin_V=10, rank=c(5,5)) str(out_BMTF, 2) ``` The reconstruction error (`RecError`) and relative error (`RelChange`, the amount of change from the reconstruction error in the previous step) can be used to diagnose whether the calculation is converged or not. ```{r conv_bmf, echo=TRUE, fig.height=4, fig.width=8} layout(t(1:2)) plot(log10(out_BMTF$RecError[-1]), type="b", main="Reconstruction Error") plot(log10(out_BMTF$RelChange[-1]), type="b", main="Relative Change") ``` The product of $U$, $S$, and $V$ shows whether the original data is well-recovered by `dNMTF`. ```{r rec_bmf, echo=TRUE, fig.height=4, fig.width=8} recX <- out_BMTF$U %*% out_BMTF$S %*% t(out_BMTF$V) layout(t(1:2)) image.plot(X, main="Original Data", legend.mar=8) image.plot(recX, main="Reconstructed Data (BMF)", legend.mar=8) ``` The histograms of $U$, $S$, and $V$ show that these take values close to 0 and 1. ```{r u_v, echo=TRUE, fig.height=4, fig.width=8} layout(t(1:3)) hist(out_BMTF$U, breaks=100) hist(out_BMTF$S, breaks=100) hist(out_BMTF$V, breaks=100) ``` Note that these factor matrices do not always take the values of 0 and 1 completely. This is because the binarization in BMTF is based on the regularization to softly set the values as close to {0,1} as possible, and is not a hard binarization. ```{r u_v2, echo=TRUE} out_BMTF$U[1:3,1:3] out_BMTF$S out_BMTF$V[1:3,1:3] ``` If you want to get the {0,1} values, use the `round` function as below: ```{r u_v3, echo=TRUE} round(out_BMTF$U[1:3,1:3], 0) round(out_BMTF$S, 0) round(out_BMTF$V[1:3,1:3], 0) ``` # Semi-Binary Matrix Tri-Factorization (SBMTF) Next, we consider the approximation of a non-negative data matrix $X$ ($N \times M$) as the matrix product of binary matrix $U$ ($N \times J1$) and non-negative matrices, $S$ ($J1 \times J2$) and $V$ ($M \times J2$): $$ X \approx U S V' \ \mathrm{s.t.}\ U \in \{0,1\}, S, V \geq 0 $$ Here, we define this formalization as Semi-Binary Matrix Tri-Factorization (SBMTF). SBMTF can capture discrete patterns from a non-negative matrix. To demonstrate SBMTF, next we use a non-negative matrix from the `nnTensor` package. ```{r data3, echo=TRUE} suppressMessages(library("nnTensor")) X2 <- nnTensor::toyModel("NMF") ``` You will see that there are five blocks in the data matrix as follows. ```{r data4, echo=TRUE, fig.height=4, fig.width=5} image.plot(X2, main="Original Data", legend.mar=8) ``` ## Basic Usage Switching from BMTF to SBMTF is quite easy; SBMTF is achieved by specifying the binary regularization parameter as a large value like below: ```{r sbmf, echo=TRUE} set.seed(123456) out_SBMTF <- dNMTF(X2, Bin_U=1E+6, rank=c(5,5)) str(out_SBMTF, 2) ``` `RecError` and `RelChange` can be used to diagnose whether the calculation is converged or not. ```{r conv_sbmf, echo=TRUE, fig.height=4, fig.width=8} layout(t(1:2)) plot(log10(out_SBMTF$RecError[-1]), type="b", main="Reconstruction Error") plot(log10(out_SBMTF$RelChange[-1]), type="b", main="Relative Change") ``` The product of $U$, $S$, and $V$ shows whether the original data is well-recovered by `dNMTF`. ```{r rec_sbmf, echo=TRUE, fig.height=4, fig.width=8} recX2 <- out_SBMTF$U %*% out_SBMTF$S %*% t(out_SBMTF$V) layout(t(1:2)) image.plot(X2, main="Original Data", legend.mar=8) image.plot(recX2, main="Reconstructed Data (SBMF)", legend.mar=8) ``` The histograms of $U$, $S$, and $V$ show that $U$ looks binary but $S$ and $V$ do not. ```{r u_v4, echo=TRUE, fig.height=4, fig.width=8} layout(t(1:3)) hist(out_SBMTF$U, breaks=100) hist(out_SBMTF$S, breaks=100) hist(out_SBMTF$V, breaks=100) ``` # Semi-Ternary Matrix Tri-Factorization (STMTF) Finally, we expand the binary regularization to ternary regularization to take {0,1,2} values as below: $$ X \approx U S V' \ \mathrm{s.t.}\ U \in \{0,1,2\}, S, V \geq 0, $$ where $X$ ($N \times M$) is a non-negative data matrix, $U$ ($N \times J1$) is a ternary matrix, and $S$ ($J1 \times J2$) and $V$ ($M \times J2$) are non-negative matrices. ## Basic Usage STMTF is achieved by specifying the ternary regularization parameter as a large value like the below: ```{r stmf, echo=TRUE} set.seed(123456) out_STMTF <- dNMTF(X2, Ter_U=1E+5, rank=c(5,5)) str(out_STMTF, 2) ``` `RecError` and `RelChange` can be used to diagnose whether the calculation is converging or not. ```{r conv_stmf, echo=TRUE, fig.height=4, fig.width=8} layout(t(1:2)) plot(log10(out_STMTF$RecError[-1]), type="b", main="Reconstruction Error") plot(log10(out_STMTF$RelChange[-1]), type="b", main="Relative Change") ``` The product of $U$, $S$, and $V$ shows that the original data is well-recovered by `dNMTF`. ```{r rec_stmf, echo=TRUE, fig.height=4, fig.width=8} recX <- out_STMTF$U %*% out_STMTF$S %*% t(out_STMTF$V) layout(t(1:2)) image.plot(X2, main="Original Data", legend.mar=8) image.plot(recX, main="Reconstructed Data (STMF)", legend.mar=8) ``` The histograms of $U$, $S$, and $V$ show that $U$ looks ternary but $S$ and $V$ do not. ```{r u_v5, echo=TRUE, fig.height=4, fig.width=8} layout(t(1:3)) hist(out_STMTF$U, breaks=100) hist(out_STMTF$S, breaks=100) hist(out_STMTF$V, breaks=100) ``` # Session Information {.unnumbered} ```{r sessionInfo, echo=FALSE} sessionInfo() ``` # References