WormTensor
Install WormTensor
package from CRAN or GitHub in
advance and then type the code below in the R console window.
worm_download
is a function to retrieve data from
figshare for a total of 28 animals (24 normal and 4 noisy). If there is
no argument, mSBD distance matrices (including 24 normal animals) will
be downloaded.
as_worm_tensor
is a function to generate a
WormTensor
object from distance matrices. A
WormTensor
object S4 class is used by
worm_membership
, worm_clustering
,
worm_evaluate
, and worm_visualize
.
worm_membership
is a function to generate a membership
tensor from a WormTensor
object with distance matrices. Set
the assumed number of clusters to k(>=2).
worm_clustering
is a function to generate a clustering
result from a WormTensor
object with a membership
tensor.
worm_evaluate
is a function to generate an evaluation
result from a WormTensor
object with a
worm_clustering
result.
worm_visualizeis a function to visualize
worm_clusteringand
worm_evaluate`
results.The above functions can also be run by connecting them with R’s native pipe.
If you have a label for the cells, you can use it for external evaluation.
# Sample Labels
worm_download()$Ds |>
as_worm_tensor() |>
worm_membership(k=6) |>
worm_clustering() -> object
labels <- list(
label1 = sample(3, length(object@clustering), replace=TRUE),
label2 = sample(4, length(object@clustering), replace=TRUE),
label3 = sample(5, length(object@clustering), replace=TRUE))
# WormTensor (with Labels)
worm_download()$Ds |>
as_worm_tensor() |>
worm_membership(k=6) |>
worm_clustering() |>
worm_evaluate(labels) |>
worm_visualize() -> object_labels
worm_distance
helps you analyze your time-series data
matrices with WormTensor
. worm_distance
is a
function to convert time-series data matrices into distance matrices.
The distance matrices can be used for analysis by
WormTensor
.
# Toy data (data of 3 animals)
n_cell_x <- 13
n_cell_y <- 24
n_cell_z <- 29
n_cells <- 30
n_time_frames <- 100
# animal_x : 13 cells, 100 time frames
animal_x <- matrix(runif(n_cell_x*n_time_frames),
nrow=n_cell_x, ncol=n_time_frames)
rownames(animal_x) <- sample(seq(n_cells), n_cell_x)
colnames(animal_x) <- seq(n_time_frames)
# animal_y : 24 cells, 100 time frames
animal_y <- matrix(runif(n_cell_y*n_time_frames),
nrow=n_cell_y, ncol=n_time_frames)
rownames(animal_y) <- sample(seq(n_cells), n_cell_y)
colnames(animal_y) <- seq(n_time_frames)
# animal_z : 29 cells, 100 time frames
animal_z <- matrix(runif(n_cell_z*n_time_frames),
nrow=n_cell_z, ncol=n_time_frames)
rownames(animal_z) <- sample(seq(n_cells), n_cell_z)
colnames(animal_z) <- seq(n_time_frames)
# Input list for worm_distnce
X <- list(animal_x=animal_x,
animal_y=animal_y,
animal_z=animal_z)
# Pipe Operation
# tsne.perplexity must be adjusted for data size
worm_distance(X, "mSBD") |>
as_worm_tensor() |>
worm_membership(k=6) |>
worm_clustering() |>
worm_evaluate() |>
worm_visualize(tsne.perplexity=5) -> object
#> R version 4.4.2 (2024-10-31)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#>
#> Matrix products: default
#> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: Etc/UTC
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] WormTensor_0.1.1 rmarkdown_2.29
#>
#> loaded via a namespace (and not attached):
#> [1] ade4_1.7-22 tidyselect_1.2.1 viridisLite_0.4.2
#> [4] farver_2.1.2 dplyr_1.1.4 fastmap_1.2.0
#> [7] promises_1.3.2 shinyjs_2.1.0 digest_0.6.37
#> [10] mime_0.12 lifecycle_1.0.4 factoextra_1.0.7
#> [13] cluster_2.1.8 magrittr_2.0.3 compiler_4.4.2
#> [16] rlang_1.1.5 sass_0.4.9 tools_4.4.2
#> [19] yaml_2.3.10 knitr_1.49 ggsignif_0.6.4
#> [22] labeling_0.4.3 plyr_1.8.9 abind_1.4-8
#> [25] Rtsne_0.17 withr_3.0.2 purrr_1.0.2
#> [28] sys_3.4.3 grid_4.4.2 stats4_4.4.2
#> [31] ggpubr_0.6.0 xtable_1.8-4 e1071_1.7-16
#> [34] colorspace_2.1-1 aricode_1.0.3 ggplot2_3.5.1
#> [37] scales_1.3.0 iterators_1.0.14 MASS_7.3-64
#> [40] cli_3.6.3 generics_0.1.3 RcppParallel_5.1.10
#> [43] RSpectra_0.16-2 reshape2_1.4.4 usedist_0.4.0
#> [46] cachem_1.1.0 proxy_0.4-27 stringr_1.5.1
#> [49] splines_4.4.2 modeltools_0.2-23 parallel_4.4.2
#> [52] clValid_0.7 vctrs_0.6.5 Matrix_1.7-2
#> [55] jsonlite_1.8.9 carData_3.0-5 car_3.1-3
#> [58] ggrepel_0.9.6 rstatix_0.7.2 Formula_1.2-5
#> [61] clue_0.3-66 maketools_1.3.1 foreach_1.5.2
#> [64] jquerylib_0.1.4 tidyr_1.3.1 glue_1.8.0
#> [67] dtw_1.23-1 codetools_0.2-20 cowplot_1.1.3
#> [70] flexclust_1.4-2 uwot_0.2.2 stringi_1.8.4
#> [73] gtable_0.3.6 rTensor_1.4.8 later_1.4.1
#> [76] munsell_0.5.1 tibble_3.2.1 pillar_1.10.1
#> [79] htmltools_0.5.8.1 clusterSim_0.51-5 R6_2.5.1
#> [82] evaluate_1.0.3 shiny_1.10.0 lattice_0.22-6
#> [85] backports_1.5.0 dtwclust_6.0.0 broom_1.0.7
#> [88] httpuv_1.6.15 bslib_0.8.0 class_7.3-23
#> [91] Rcpp_1.0.14 nlme_3.1-166 mgcv_1.9-1
#> [94] xfun_0.50 buildtools_1.0.0 pkgconfig_2.0.3